Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 47, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639596

RESUMO

Previous attempts to quantify tree abundance at global scale have largely neglected the role of local competition in modulating the influence of climate and soils on tree density. Here, we evaluated whether mean tree size in the world's natural forests alters the effect of global productivity on tree density. In doing so, we gathered a vast set of forest inventories including >3000 sampling plots from 23 well-conserved areas worldwide to encompass (as much as possible) the main forest biomes on Earth. We evidence that latitudinal productivity patterns of tree density become evident as large trees become dominant. Global estimates of tree abundance should, therefore, consider dependencies of latitudinal sources of variability on local biotic influences to avoid underestimating the number of trees on Earth and to properly evaluate the functional and social consequences.


Assuntos
Florestas , Árvores , Ecossistema , Clima , Mudança Climática
2.
Ecology ; 101(7): e03058, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304221

RESUMO

Many studies have tried to assess the role of both deterministic and stochastic processes in community assembly, yet a lack of consensus exists on which processes are more prevalent and at which spatial scales they operate. To shed light on this issue, we tested two nonmutually exclusive, scale-dependent hypotheses: (1) that competitive exclusion dominates at small spatial scales; and (2) that environmental filtering does so at larger ones. To accomplish this, we studied the functional patterns of tropical montane forest communities along two altitudinal gradients, in Ecuador and Peru, using floristic and functional data from 60 plots of 0.1 ha. We found no evidence of either functional overdispersion or clustering at small spatial scales, but we did find functional clustering at larger ones. The observed pattern of clustering, consistent with an environmental filtering process, was more evident when maximizing the environmental differences among any pair of plots. To strengthen the link between the observed community functional pattern and the underlying process of environmental filtering, we explored differences in the climatic preferences of the most abundant species found at lower and higher elevations and examined whether their abundances shifted along the elevation gradient. We found (1) that greater community functional differences (observed between lower and upper tropical montane forest assemblies) were mostly the result of strong climatic preferences, maintained across the Neotropics; and (2) that the abundances of such species shifted along the elevational gradient. Our findings support the conclusion that, at large spatial scales, environmental filtering is the overriding mechanism for community assembly, because the pattern of functional clustering was linked to species' similarities in their climatic preferences, which ultimately resulted in shifts in species abundances along the gradient. However, there was no evidence of competitive exclusion at more homogeneous, smaller spatial scales, where plant species effectively compete for resources.


Assuntos
Biodiversidade , Árvores , Equador , Florestas , Peru
3.
Front Plant Sci ; 11: 106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194581

RESUMO

Tropical montane forests (TMFs) play an important role as a carbon reservoir at a global scale. However, there is a lack of a comprehensive understanding on the variation in carbon storage across TMF compartments [namely aboveground biomass (AGB), belowground biomass (BGB), and soil organic matter] along altitudinal and environmental gradients and their potential trade-offs. This study aims to: 1) understand how carbon stocks vary along altitudinal gradients in Andean TMFs, and; 2) determine the influence of climate, particularly precipitation seasonality, on the distribution of carbon stocks across different forest compartments. The study was conducted in sixty 0.1 ha plots along two altitudinal gradients at the Podocarpus National Park (Ecuador) and Río Abiseo National Park (Peru). At each plot, we calculated the amount of carbon in AGB (i.e. aboveground carbon stock, AGC), BGB (i.e. belowground carbon stock, BGC), and soil organic matter (i.e. soil organic carbon stock, SOC). The mean total carbon stock was 244.76 ± 80.38 Mg ha-1 and 211.51 ± 46.95 Mg ha-1 in the Ecuadorian and Peruvian plots, respectively. Although AGC, BGC, and SOC showed different partitioning patterns along the altitudinal gradient both in Ecuador and Peru, total carbon stock did not change with altitude in either site. The combination of annual mean temperature and precipitation seasonality explained differences in the observed patterns of carbon stocks across forest compartments between the two sites. This study suggests that the greater precipitation seasonality of colder, higher altitudes may promote faster turnover rates of organic matter and nutrients and, consequently, less accumulation of SOC but greater AGC and BGC, compared to those sites with lesser precipitation seasonality. Our results demonstrate the capacity of TMFs to store substantial amounts of carbon and suggest the existence of a trade-off in carbon stocks among forest compartments, which could be partly driven by differences in precipitation seasonality, especially under the colder temperatures of high altitudes.

4.
Proc Natl Acad Sci U S A ; 112(26): 8013-8, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080411

RESUMO

Although forest succession has traditionally been approached as a deterministic process, successional trajectories of vegetation change vary widely, even among nearby stands with similar environmental conditions and disturbance histories. Here, we provide the first attempt, to our knowledge, to quantify predictability and uncertainty during succession based on the most extensive long-term datasets ever assembled for Neotropical forests. We develop a novel approach that integrates deterministic and stochastic components into different candidate models describing the dynamical interactions among three widely used and interrelated forest attributes--stem density, basal area, and species density. Within each of the seven study sites, successional trajectories were highly idiosyncratic, even when controlling for prior land use, environment, and initial conditions in these attributes. Plot factors were far more important than stand age in explaining successional trajectories. For each site, the best-fit model was able to capture the complete set of time series in certain attributes only when both the deterministic and stochastic components were set to similar magnitudes. Surprisingly, predictability of stem density, basal area, and species density did not show consistent trends across attributes, study sites, or land use history, and was independent of plot size and time series length. The model developed here represents the best approach, to date, for characterizing autogenic successional dynamics and demonstrates the low predictability of successional trajectories. These high levels of uncertainty suggest that the impacts of allogenic factors on rates of change during tropical forest succession are far more pervasive than previously thought, challenging the way ecologists view and investigate forest regeneration.


Assuntos
Ecossistema , Florestas , Clima Tropical , Incerteza , Processos Estocásticos
5.
Rev. biol. trop ; 58(4): 1283-1297, dic. 2010. ilus, graf, mapas, tab
Artigo em Inglês | LILACS | ID: lil-638001

RESUMO

One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees ≥3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane) and the canopy thinning phase (marked by increased competition and mortality). Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005) and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration. Rev. Biol. Trop. 58 (4): 1283-1297. Epub 2010 December 01.


Estudiamos el efecto de los fenómenos naturales sobre la dinámica de bosques húmedos tropicales del este de Nicaragua después del paso del huracán Juana en 1988. Evaluamos las tasas de crecimiento y mortalidad de las 26 especies más comunes en ese bosque posterior al huracán. El estudio se llevó a cabo en dos localidades del área afectada por el huracán. Establecimos parcelas permanentes en dos sitios afectados por el huracán, en las cuales medimos variables demográficas poblacionales a todos los individuos con un diámetro a la altura del pecho ≥3.18cm. El estudio se realizó durante dos fases, la fase de construcción de dosel (caracterizada por el aumento en el número de individuos de las especies que resistieron el huracán) la fase de raleo del dosel (caracterizado por el aumento de la competencia y mortalidad). El análisis de la mortalidad en la etapa de raleo del dosel trata de probar la hipótesis que la mortalidad de los árboles no esta ligada a la identidad de especies de árboles y que la sobrevivencia se encuentra directamente relacionada con el crecimiento de los árboles. Asimismo, estos resultados confirman la hipótesis de independencia con respecto a posibles nichos ecológicos.


Assuntos
Biodiversidade , Tempestades Ciclônicas/estatística & dados numéricos , Regeneração , Árvores/fisiologia , Ecossistema , Meio Ambiente , Nicarágua , Dinâmica Populacional , Especificidade da Espécie , Clima Tropical , Árvores/crescimento & desenvolvimento
6.
Rev Biol Trop ; 58(4): 1283-97, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21246992

RESUMO

One of the strongest hypothesis about the maintenance of tree species diversity in tropical areas is disturbance. In order to assess this, the effect of intensive natural disturbances on forest growth and mortality in a thinning canopy was studied after the landfall of hurricane Joan in 1988. We evaluated the growth and mortality rates of the 26 most common tree species of that forest in eastern Nicaragua. Permanent plots were established at two study sites within the damaged area. Growth and mortality rates of all individual trees > or = 3.18cm diameter at breast height were assessed annually from 1990 to 2005. During this period the forest underwent two phases: the building phase (marked by increased number of individuals of tree species present after the hurricane) and the canopy thinning phase (marked by increased competition and mortality). Our results from the thinning phase show that tree survival was independent of species identity and was positively related to the increase in growth rates. The analysis of mortality presented here aims to test the null hypothesis that individual trees die independently of their species identity. These findings were influenced by the mortality observed during the late thinning phase (2003-2005) and provide evidence in favor of a non-niche hypothesis at the thinning phase of forest regeneration.


Assuntos
Biodiversidade , Tempestades Ciclônicas/estatística & dados numéricos , Regeneração , Árvores/fisiologia , Ecossistema , Meio Ambiente , Nicarágua , Dinâmica Populacional , Especificidade da Espécie , Árvores/crescimento & desenvolvimento , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...